
Surviving Client/Server:
Stored Procedures Part 2
by Steve Troxell

Last month we took a look at
some of the benefits of using

stored procedures for the SQL
queries in your system. This
month, we’re going to take a
closer look at how to construct a
few typical Interbase stored pro-
cedures and how to access them
from Delphi. The techniques used
here are specific for Interbase and
will undoubtedly be very differ-
ent for other back-end servers.
Consult your server’s manuals for
specific information.

All of the Interbase examples use
the sample EMPLOYEE.GDB data-
base that ships with Delphi. This
file is found in the C:\IBLOCAL\
EXAMPLES directory. For the pur-
poses of this article, we’ll assume
you are working with a copy of this
database called MYEMPL.GDB and
that there is a corresponding BDE
alias called MYEMPL. The exam-
ples in this article can be found on
the free disk with this issue.

Using Interbase Script Files
The best way to manage stored
procedures in an Interbase data-
base is to write a script file contain-
ing the SQL statements to create
the stored procedures. We can cre-
ate the script file using any ASCII
text editor and then run it through
ISQL to perform the SQL state-
ments we have stored in our script.
In this way we have a “source file”
from which we can make changes
to the stored procedures and rec-
reate them in the database. With-
out a script file, it would be very
difficult to modify an existing
stored procedure.

For this example, we’ll write a
stored procedure that, given an
employee number, returns a few
columns from the Employee table
pertaining to that employee.
Listing 1 shows the script file we’ll
use (LISTING1.SQL on the disk).

The first statement that must
appear in the script file is a CONNECT
statement. This is an Interbase SQL
statement to connect to the data-
base in which we will run the
script. After the CONNECT verb, sup-
ply the full path and name for the
database file. Then we must supply
the username and password with
which we will connect to database.
Be sure to end this entire state-
ment with a semi-colon. Unlike
single SQL statements executed in-
teractively with ISQL, SQL state-
ments within script files need to be
properly terminated.

Before we can use the CREATE
PROCEDURE statement to actually
create a stored procedure, we
must redefine the SQL terminator
character using the SET TERM state-
ment. We have to do this because
the CREATE PROCEDURE statement will
have other SQL statements embed-
ded within it (the body of the
stored procedure). The script file
parser is not very intelligent and it
will consider the end of the first
stored procedure statement to
be the end of the entire CREATE
PROCEDURE statement. To get around
this, we redefine the SQL termina-
tor character for our script file. We
continue to use the semi-colon ter-
minator for SQL statements that
make up the body of our stored
procedure, but “outer” SQL com-
mands, like our CREATE PROCEDURE

statement, will use the redefined
terminator character to signal
their end. In this example, we are
defining the ^ character to be our
new terminator character (notice
how the SET TERM statement itself is
terminated with a semi-colon, the
“old” terminator).

Now we are finally ready to make
our stored procedure. The CREATE
PROCEDURE statement is followed by
the name of the stored procedure
and a comma-separated list of
input parameters enclosed within
parentheses. Each parameter is
given a name and followed by
the SQL datatype for that parame-
ter. The RETURNS clause is used
to identify any output parameters
returned by the procedure (again,
a comma separated list of parame-
ters enclosed within parentheses).

The statements within the AS
BEGIN...END block define the state-
ments that make up the stored
procedure. In this case, the proce-
dure consists of a single SELECT
statement. In the WHERE clause, we
refer to the input parameter EmpNo
by preceding it with a colon (in
much the same way as Delphi iden-
tifies parameters within TQueries).
Also, we use the special INTO clause
to copy the selected columns into
the output parameters. Again, each
parameter name is preceded with
a colon. The order of the columns
listed in the SELECT must match the

CONNECT “c:\iblocal\examples\myempl.gdb”
 USER “SYSDBA” PASSWORD “masterkey”;
SET TERM ^;
CREATE PROCEDURE Get_Employee(EmpNo integer)
RETURNS(First_Name varchar(15), Last_Name varchar(20),
 Phone_Ext varchar(4), Dept_No char(3))
AS
BEGIN
 SELECT First_Name, Last_Name, Phone_Ext, Dept_No
 FROM Employee
 WHERE Emp_No = :EmpNo
 INTO :First_Name, :Last_Name, :Phone_Ext, :Dept_No;
END^

➤ Listing 1

24 The Delphi Magazine Issue 7

order of the parameters listed in
the INTO.

Note that we terminate the
SELECT statement with a semi-
colon; all SQL statements compris-
ing the body of the stored proce-
dure are terminated with a
semi-colon. Note further that the AS
BEGIN...END block is terminated
with a ^. This uses our redefined
terminator character to terminate
the overall CREATE PROCEDURE
statement.

To run the completed script file
through ISQL, go to the File menu
and select Run an ISQL Script.
Enter the path and name of your
script file. It is not necessary to be
connected to the database since
we are required to use an explicit
CONNECT statement within the script
file. However, the connection made
by the CONNECT statement only lasts
for the duration of the script file.
Once the script completes, ISQL
will be left in an unconnected state.
You will generally want to connect
through ISQL anyway, since you
can’t do anything with the data-
base after you’ve run your script
file unless you do.

Once you’ve run the script, you
can see the stored procedure in the
database by selecting View |
Metadata Information from the
menu. Select Procedure from the
combo box and enter Get_Employee
for the object name (see Figure 1).

Once you click Ok, the stored pro-
cedure definition appears in the
ISQL Output window.

To test our stored procedure, go
back to the SQL Statement window
and run the SQL query shown
in Figure 2. This is the Interbase
SQL statement to run our stored
procedure. We are passing an
arbitrary value of 15 for the input
parameter (the employee num-
ber). Note that we do not include
anything for the output parame-
ters. In this case, the output of the
stored procedure is viewed as a
single row result set, where the
output parameter names serve as
the column headers.

To use this stored procedure
from a Delphi application, use a
TStoredProc component setup as
shown in Figure 3 (or see the
EXAMPLE1.DPR project on the
disk). Set the DatabaseName prop-
erty to the MYEMPL alias to connect
the component to the database. In
the StoredProcName property, select
the GET_EMPLOYEE procedure from
the drop down list.

With Interbase, once you select
the stored procedure, the Params
property is automatically popu-
lated. The Params property editor is
shown in Figure 4. The parameters
are listed alphabetically and the
parameter type and data type for
each is already filled out. Delphi is
not able to obtain complete

parameter information for all back-
end servers, so you may have to fill
out some of this information by
hand if you’re not using Interbase.

Ironically, although this stored
procedure technically appears to
produce a single row result set in
ISQL, you do not use Open to run it.
Since the data for the result set is
passed back through parameters,
there is no result set as such ob-
tainable by Delphi. So, we execute
this procedure by using ExecProc.
Confused? Suffice it to say that
Interbase stored procedures do
not produce result sets that are
directly accessible by TStoredProc.
As we’ll see soon, other back-end
servers do, and this explains why
TStoredProc has all those data set
capabilities built into it.

To run this stored procedure, we
simply call the ExecProc method
and examine the output parame-
ters through the ParamByName
method. The code shown in Listing
2 executes this stored procedure,
examines the first name field to see
if a matching record was found
(assuming no record can have a
null name field), and copies the val-
ues into edit controls. Since there
is no data set associated with this
stored procedure, we cannot use a
TDataSource component to link
data-aware controls to its output.

Multiple Row Result Sets
What about returning multiple row
result sets? If there is no data set
associated with Interbase stored
procedures, how can we handle
this? As it turns out, you cannot

➤ Figure 1

➤ Figure 3EXECUTE PROCEDURE Get_Employee(15)

FIRST_NAME LAST_NAME PHONE_EXT DEPT_NO
=============== ==================== ========= =======
Katherine Young 231 623

➤ Figure 2

March 1996 The Delphi Magazine 25

use TStoredProc at all with Inter-
base stored procedures that return
multiple row result sets. If you try,
you’ll only see the first row if you
use ExecProc, or you’ll get an “Error
creating cursor handle” exception if
you use Open. Fortunately, we can
use a TQuery to execute the stored
procedure with a special form of
the SELECT statement to obtain a
result set.

First we’ll need to modify the
stored procedure itself to enable it
to return more than one row. Let’s
write a new stored procedure
called Get_Employees_ByDept that
returns all the employees for a
given department. Take a look at
Listing 3.

This is very similar to our first
stored procedure, except we have
added a looping construct (the
FOR-DO SUSPEND) around the SELECT
statement. Because the column
values are passed back through
output parameters, only one set of
values can be returned at one time.
The FOR-DO SUSPEND logic causes
control to return to the calling pro-
gram between each row returned
by the query. So, if this query pro-
duces a result set of say 10 rows,
the first row is passed back
through the output parameters
and the SUSPEND statement returns
control to the calling program (the
query remains open and active).
The program is then expected to
issue an SQL FETCH command to get
each successive row. This repeats
one row at a time until all the rows
are retrieved.

Although this sounds like a lot of
work, we can encapsulate it all
within a single SELECT statement
where we substitute the stored
procedure name for the table name
(see Figure 5).

This SELECT statement performs
all the overhead of FETCHing the
subsequent rows from the stored
procedure and returns a complete
result set for all rows found by the
query. Note that this is a special
form of the SELECT statement for
Interbase, it may or may not be
supported (or needed) on other
SQL servers. Now all we have to do
to access this stored procedure
from Delphi is use this SELECT state-
ment within a TQuery. Since we will

➤ Figure 4

procedure TForm1.btnFindClick(Sender: TObject);
begin
 with StoredProc1 do begin
 ParamByName(’EmpNo’).AsInteger := StrToInt(edtEmpNo.Text);
 ExecProc;
 if ParamByName(’First_Name’).IsNull then
 raise Exception.Create(’Employee not found’);
 edtName.Text := ParamByName(’First_Name’).AsString + ’ ’ +
 ParamByName(’Last_Name’).AsString;
 edtDept.Text := ParamByName(’Dept_No’).AsString;
 edtExtension.Text := ParamByName(’Phone_Ext’).AsString;
 end;
end;

➤ Listing 2

CONNECT “c:\iblocal\examples\myempl.gdb”
 USER “SYSDBA” PASSWORD “masterkey”;
SET TERM ^;
CREATE PROCEDURE Get_Employees_ByDept(Dept char(3))
RETURNS(Emp_No smallint, First_Name varchar(15),
 Last_Name varchar(20), Phone_Ext varchar(4))
AS
BEGIN
 FOR
 SELECT Emp_No, First_Name, Last_Name, Phone_Ext
 FROM Employee
 WHERE Dept_No = :Dept
 INTO :Emp_No, :First_Name, :Last_Name, :Phone_Ext
 DO SUSPEND;
END^

➤ Listing 3

SELECT * FROM Get_Employees_ByDept(’623’)

EMP_NO FIRST_NAME LAST_NAME PHONE_EXT
====== =============== ==================== =========
 15 Katherine Young 231
 29 Roger De Souza 288
 44 Leslie Phong 216
 114 Bill Parker 247
 136 Scott Johnson 265

➤ Figure 5

26 The Delphi Magazine Issue 7

be getting a true result set, we Open
the query and manipulate it with all
the normal data set navigation
methods (see Listing 4).

So why does TStoredProc have
the same result set handling meth-
ods as TQuery and TTable if it appar-
ently can’t be used with result set
producing stored procedures? In
actuality, this limitation is a
function of the back-end server.
Stored procedures in Sybase and
Microsoft SQL Server, for example,
can produce result sets that
TStoredProc can manipulate.

Listing 5 shows a Microsoft SQL
Server version of the Interbase
stored procedure shown in Listing
3 (note the subtle differences in
SQL syntax). In this case, an
“implied result set” is created and
output parameters are not neces-
sary. You can access the columns
listed in the SELECT statement
through TStoredProc’s Fields or
FieldByName methods, and you can
navigate through the result set
with First, Next etc (just as you
would had you executed the same
SELECT statement through a
TQuery).

The two stored procedures
shown in Listings 3 and 5 illustrate
the point I made at the start of this
article: stored procedure imple-
mentations can and do vary widely
between vendors. You have to
consult the SQL manuals for your
server to know exactly how to
write stored procedures.

Multiple Queries
In One Procedure
You shouldn’t look at a stored
procedure as simply a wrapper
around a single SQL query. As we
saw last month, it is possible and
often desirable to perform many
queries, possibly containing flow
control statements, within a single
stored procedure.

Listing 6 shows a stored proce-
dure taken from the Interbase
sample database EMPLOYEE.GDB.
It performs the task of deleting an
employee from the system. As you
can see, this procedure does more
than merely delete a row from one
table.

First, it makes sure that the
employee is not associated with

any sales orders (they must be
re-assigned to another salesman,
something that should be done by
a human being). Then, if the
employee was a department man-
ager, they are removed from that
table (note that the department is
not deleted, it just no longer has a
manager). The same process
occurs for any projects for which
the employee might have been a
team leader (again, the projects
remain, they are simply leader-
less). The employee is removed
from any projects they may have
been assigned to and all previous
salary history is removed. Finally,
the actual employee record is
removed.

This is known as a “cascading
delete”, where the act of deleting a
master record from a table
“cascades” into several deletes
across the whole system. It is a way
of enforcing referential integrity so
that no orphaned records are

produced and no invalid links
across foreign keys remain in the
system. This procedure takes
advantage of one of the principal
benefits of stored procedures to
encapsulate all of the logic in-
volved with deleting an employee.
It is also a much cleaner solution
than submitting six separate
queries from the application, even
if those queries could be encapsu-
lated at a single point in the
application.

Several more interesting stored
procedure examples can be found
in your Delphi installation in the
directory:

\IBLOCAL\EXAMPLES\TUTORIAL\PROCS.SQL

Summary
Stored procedures provide a whole
new layer of functionality to your
system. If you’re careful about how
you organize and name your stored
procedures, you can even hide
changes to the database schema.

SQL Code:

CREATE PROCEDURE Get_Employees_ByDept(@Dept char(3))
AS
BEGIN
 SELECT Emp_No, First_Name, Last_Name, Phone_Ext
 FROM Employee
 WHERE Dept_No = @Dept
END

Delphi Code:

with StoredProc1 do begin
 ParamByName(’@Dept’).AsString := ’623’;
 Open;
 while not Eof do begin
 { Do something with...} FieldByName(’Last_Name’).AsString;
 { Do something with...} FieldByName(’First_Name’).AsString;
 { etc }
 Next;
 end;
 Close; { Close StoredProc1 }
end;

➤ Listing 5

with Query1 do begin
 { Normally, the SQL code would be set at design time
 through the property editor }
 SQL.SetText(’SELECT * FROM GetEmployee(:Dept)’);
 ParamByName(’Dept’).AsString := ’623’;
 Open;
 while not Eof do begin
 { Do something with...} FieldByName(’Last_Name’).AsString;
 { Do something with...} FieldByName(’First_Name’).AsString;
 { etc }
 Next;
 end;
 Close; { Close Query1 }
end;

➤ Listing 4

March 1996 The Delphi Magazine 27

Reorganization of the underlying
tables could be transparent to the
application.

Hopefully these articles have
shown you that stored procedures

are valuable tools for the client/
server developer. The cost of these
benefits is an added dimension to
the development process, but this
can be minimized by high-quality

SQL development tools. There are
as yet no standards for stored
procedures and some vendor’s
implementations are better than
others. As always, check every-
thing against you’re particular
server’s manuals.

In next month’s issue we’ll look
at aliases and the TDatabase compo-
nent, including a brief look at using
the BDE API to set up an alias
entirely from code (to give your
installation programs that extra
pizazz).

Steve Troxell is a Software
Engineer with TurboPower
Software where he is developing
Delphi Client/Server applications
using InterBase and Microsoft SQL
Server for parent company Casino
Data Systems. Steve can be
reached on the internet at
stevet@tpower.com and also on
CompuServe at 74071,2207

CREATE PROCEDURE Delete_Employee (Emp_Num integer)
AS
 DECLARE VARIABLE Any_Sales integer;
BEGIN
 Any_Sales = 0;
 SELECT COUNT(PO_Number)
 FROM Sales
 WHERE Sales_Rep = :Emp_Num
 INTO :Any_Sales;
 IF (Any_Sales > 0) THEN
 EXCEPTION Reassign_Sales;
 UPDATE Department
 SET Mngr_No = NULL
 WHERE Mngr_No = :Emp_Num;

/* If the employee is a project leader, update project. */
 UPDATE Project
 SET Team_Leader = NULL
 WHERE Team_Leader = :Emp_Num;

/* Delete the employee from any projects. */
 DELETE FROM Employee_Project
 WHERE Emp_No = :Emp_Num;

/* Delete old salary records. */
 DELETE FROM Salary_History
 WHERE Emp_No = :Emp_Num;

 /* Delete the employee. */
 DELETE FROM Employee
 WHERE Emp_No = :Emp_Num;
END

➤ Listing 6

28 The Delphi Magazine Issue 7

	Using Interbase Script Files
	Multiples Row Result Sets
	Multiple Queries In One Procedures
	Summary

